The Arabidopsis COX11 Homolog is Essential for Cytochrome c Oxidase Activity
نویسندگان
چکیده
Members of the ubiquitous COX11 (cytochrome c oxidase 11) protein family are involved in copper delivery to the COX complex. In this work, we characterize the Arabidopsis thaliana COX11 homolog (encoded by locus At1g02410). Western blot analyses and confocal microscopy identified Arabidopsis COX11 as an integral mitochondrial protein. Despite sharing high sequence and structural similarities, the Arabidopsis COX11 is not able to functionally replace the Saccharomyces cerevisiae COX11 homolog. Nevertheless, further analysis confirmed the hypothesis that Arabidopsis COX11 is essential for COX activity. Disturbance of COX11 expression through knockdown (KD) or overexpression (OE) affected COX activity. In KD lines, the activity was reduced by ~50%, resulting in root growth inhibition, smaller rosettes and leaf curling. In OE lines, the reduction was less pronounced (~80% of the wild type), still resulting in root growth inhibition. Additionally, pollen germination was impaired in COX11 KD and OE plants. This effect on pollen germination can only partially be attributed to COX deficiency and may indicate a possible auxiliary role of COX11 in ROS metabolism. In agreement with its role in energy production, the COX11 promoter is highly active in cells and tissues with high-energy demand for example shoot and root meristems, or vascular tissues of source and sink organs. In COX11 KD lines, the expression of the plasma-membrane copper transporter COPT2 and of several copper chaperones was altered, indicative of a retrograde signaling pathway pertinent to copper homeostasis. Based on our data, we postulate that COX11 is a mitochondrial chaperone, which plays an important role for plant growth and pollen germination as an essential COX complex assembly factor.
منابع مشابه
Redox-regulated dynamic interplay between Cox19 and the copper-binding protein Cox11 in the intermembrane space of mitochondria facilitates biogenesis of cytochrome c oxidase
Members of the twin Cx9C protein family constitute the largest group of proteins in the intermembrane space (IMS) of mitochondria. Despite their conserved nature and their essential role in the biogenesis of the respiratory chain, the molecular function of twin Cx9C proteins is largely unknown. We performed a SILAC-based quantitative proteomic analysis to identify interaction partners of the co...
متن کاملFunctional analysis of the domains in Cox11.
Cox11 is an intrinsic mitochondrial membrane protein essential for the assembly of an active cytochrome c oxidase complex. Cox11 is tethered to the mitochondrial inner membrane by a single transmembrane helix. Domain mapping was carried out to determine the functional segments of the Cox11 protein. The C-terminal 189 residue Cu(I)-binding domain is shown to be exposed within the mitochondrial i...
متن کاملSpecific copper transfer from the Cox17 metallochaperone to both Sco1 and Cox11 in the assembly of yeast cytochrome C oxidase.
The assembly of the copper sites in cytochrome c oxidase involves a series of accessory proteins, including Cox11, Cox17, and Sco1. The two mitochondrial inner membrane proteins Cox11 and Sco1 are thought to be copper donors to the Cu(B) and Cu(A) sites of cytochrome oxidase, respectively, whereas Cox17 is believed to be the copper donor to Sco1 within the intermembrane space. In this report we...
متن کاملHomocysteine Restricts Copper Availability Leading to Suppression of Cytochrome C Oxidase Activity in Phenylephrine-Treated Cardiomyocytes
Cardiomyocyte hypertrophy induced by phenylephrine (PE) is accompanied by suppression of cytochrome c oxidase (CCO) activity, and copper (Cu) supplementation restores CCO activity and reverses the hypertrophy. The present study was aimed to understand the mechanism of PE-induced decrease in CCO activity. Primary cultures of neonatal rat cardiomyocytes were treated with PE at a final concentrati...
متن کاملTranscriptome analysis of copper homeostasis genes reveals coordinated upregulation of SLC31A1,SCO1, and COX11 in colorectal cancer
Copper homeostasis and distribution is strictly regulated by a network of transporters and intracellular chaperones encoded by a group of genes collectively known as copper homeostasis genes (CHGs). In this work, analysis of The Cancer Genome Atlas database for somatic point mutations in colorectal cancer revealed that inactivating mutations are absent or extremely rare in CHGs. Using oligonucl...
متن کامل